If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-20y-16=0
a = 6; b = -20; c = -16;
Δ = b2-4ac
Δ = -202-4·6·(-16)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-28}{2*6}=\frac{-8}{12} =-2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+28}{2*6}=\frac{48}{12} =4 $
| 1500=18x+11 | | M=150x+350 | | (x-100)(x+1)=0 | | 3(-2n+9)=-19 | | 5x+30+45=360 | | (-2y)-13=2+3y | | 0.20×(x+15)=8 | | (5x+30)+45=180 | | -(5x)-1=136 | | 3=(2p+3+4p) | | 7x-12=5x+16 | | 136=-5x-1 | | -12=-32+4i | | x^2—14x+18=–19 | | 1/5×(x+15)=8 | | -5x-1=136 | | /3c+5=23. | | 4/3(6x-9)=1/2(4x-12) | | 110+(6x-2)=180 | | 2x+20=100x | | 8(4-2h)=-2(5+8h) | | 4^(4x)=7^(2) | | -4=x5+6 | | x−13=−18 | | 4(x+3)+2x=2x-8 | | -8-8i=-24 | | −7=4y+9 | | 2/x=6/5x+1 | | 3x+1=3x+44 | | -6n(5n-10)=0 | | 1/2(2x+3)+4x=9x+10 | | 14=28+7i |